1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
kandaceolp0403 edited this page 2025-02-27 07:47:35 +00:00
This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.


Today, we are excited to reveal that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, along with the distilled variations ranging from 1.5 to 70 billion criteria to construct, experiment, and responsibly scale your generative AI concepts on AWS.

In this post, we demonstrate how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to deploy the distilled versions of the designs also.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language model (LLM) established by DeepSeek AI that uses reinforcement learning to enhance reasoning abilities through a multi-stage training process from a DeepSeek-V3-Base foundation. A key differentiating feature is its reinforcement learning (RL) action, which was used to refine the model's responses beyond the standard pre-training and tweak process. By including RL, DeepSeek-R1 can adapt better to user feedback and goals, ultimately improving both significance and clarity. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) technique, indicating it's equipped to break down intricate inquiries and reason through them in a detailed way. This directed reasoning process permits the model to produce more accurate, transparent, and detailed answers. This model integrates RL-based fine-tuning with CoT capabilities, aiming to generate structured responses while concentrating on interpretability and user interaction. With its comprehensive capabilities DeepSeek-R1 has actually captured the market's attention as a versatile text-generation design that can be incorporated into different workflows such as agents, logical thinking and data interpretation jobs.

DeepSeek-R1 uses a Mix of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture allows activation of 37 billion specifications, making it possible for efficient inference by routing queries to the most relevant professional "clusters." This approach allows the model to focus on different issue domains while maintaining overall effectiveness. DeepSeek-R1 needs a minimum of 800 GB of HBM memory in FP8 format for reasoning. In this post, we will utilize an ml.p5e.48 xlarge instance to release the model. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the thinking capabilities of the main R1 model to more efficient architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a process of training smaller sized, more efficient models to imitate the behavior and reasoning patterns of the bigger DeepSeek-R1 model, using it as an instructor design.

You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we recommend releasing this design with guardrails in place. In this blog, we will use Amazon Bedrock Guardrails to introduce safeguards, avoid harmful material, and assess designs against essential security requirements. At the time of writing this blog site, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can develop numerous guardrails tailored to different usage cases and apply them to the DeepSeek-R1 model, enhancing user experiences and standardizing safety controls throughout your generative AI applications.

Prerequisites

To release the DeepSeek-R1 design, you need access to an ml.p5e instance. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and verify you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To request a limit boost, produce a limitation boost demand and reach out to your account team.

Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the correct AWS Identity and Gain Access To Management (IAM) approvals to utilize Amazon Bedrock Guardrails. For instructions, see Establish authorizations to utilize guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails enables you to present safeguards, avoid harmful material, and evaluate models against essential safety criteria. You can carry out precaution for the DeepSeek-R1 design utilizing the Amazon Bedrock ApplyGuardrail API. This allows you to use guardrails to evaluate user inputs and model responses released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.

The basic circulation involves the following actions: First, the system gets an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the model for reasoning. After getting the model's output, another guardrail check is applied. If the output passes this final check, it's returned as the result. However, if either the input or output is intervened by the guardrail, a message is returned showing the nature of the intervention and whether it took place at the input or output phase. The examples showcased in the following sections show reasoning using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following steps:

1. On the Amazon Bedrock console, pick Model brochure under Foundation models in the navigation pane. At the time of composing this post, you can utilize the InvokeModel API to conjure up the design. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a service provider and select the DeepSeek-R1 design.

The model detail page offers vital details about the design's abilities, rates structure, and execution standards. You can discover detailed usage instructions, consisting of sample API calls and code bits for integration. The design supports numerous text generation tasks, including content development, photorum.eclat-mauve.fr code generation, and question answering, using its reinforcement discovering optimization and CoT reasoning capabilities. The page also consists of implementation alternatives and licensing details to assist you get going with DeepSeek-R1 in your applications. 3. To begin using DeepSeek-R1, pick Deploy.

You will be triggered to configure the release details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, go into an endpoint name (between 1-50 alphanumeric characters). 5. For Variety of instances, get in a variety of circumstances (between 1-100). 6. For Instance type, pick your circumstances type. For ideal performance with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is advised. Optionally, you can set up innovative security and infrastructure settings, consisting of virtual private cloud (VPC) networking, service function authorizations, and encryption settings. For the majority of utilize cases, the default settings will work well. However, for production implementations, you may wish to examine these settings to line up with your organization's security and compliance requirements. 7. Choose Deploy to begin utilizing the design.

When the deployment is complete, you can test DeepSeek-R1's capabilities straight in the Amazon Bedrock play area. 8. Choose Open in play ground to access an interactive interface where you can try out different triggers and adjust design parameters like temperature level and maximum length. When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat design template for optimal outcomes. For example, content for reasoning.

This is an exceptional method to check out the design's reasoning and text generation capabilities before integrating it into your applications. The play ground offers instant feedback, helping you comprehend how the model reacts to different inputs and letting you fine-tune your triggers for optimal results.

You can quickly check the model in the play ground through the UI. However, to invoke the released model programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run inference using guardrails with the deployed DeepSeek-R1 endpoint

The following code example demonstrates how to carry out reasoning using a released DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have actually created the guardrail, utilize the following code to implement guardrails. The script initializes the bedrock_runtime customer, configures reasoning parameters, and sends a request to produce text based upon a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML services that you can deploy with just a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your use case, with your information, and deploy them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart provides 2 hassle-free methods: using the instinctive SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's explore both methods to help you pick the technique that finest suits your requirements.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to deploy DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, choose Studio in the navigation pane. 2. First-time users will be triggered to produce a domain. 3. On the SageMaker Studio console, select JumpStart in the navigation pane.

The design browser displays available designs, with details like the company name and design capabilities.

4. Search for DeepSeek-R1 to see the DeepSeek-R1 model card. Each design card shows crucial details, including:

- Model name

  • Provider name
  • Task category (for instance, Text Generation). Bedrock Ready badge (if relevant), suggesting that this model can be signed up with Amazon Bedrock, enabling you to utilize Amazon Bedrock APIs to invoke the design

    5. Choose the model card to see the model details page.

    The design details page includes the following details:

    - The design name and company details. Deploy button to deploy the design. About and Notebooks tabs with detailed details

    The About tab consists of crucial details, such as:

    - Model description.
  • License details.
  • Technical requirements.
  • Usage guidelines

    Before you release the design, it's advised to review the design details and license terms to verify compatibility with your usage case.

    6. Choose Deploy to continue with deployment.

    7. For Endpoint name, use the instantly created name or create a custom one.
  1. For Instance type ¸ choose a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, get in the number of instances (default: 1). Selecting appropriate instance types and counts is important for expense and performance optimization. Monitor your deployment to change these settings as needed.Under Inference type, Real-time inference is selected by default. This is optimized for sustained traffic and low latency.
  3. Review all setups for precision. For this model, we strongly suggest sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
  4. Choose Deploy to deploy the model.

    The deployment procedure can take numerous minutes to complete.

    When deployment is total, your endpoint status will change to InService. At this point, the design is prepared to accept reasoning requests through the endpoint. You can monitor the release development on the SageMaker console Endpoints page, which will show relevant metrics and status details. When the deployment is complete, you can invoke the model utilizing a SageMaker runtime client and incorporate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To begin with DeepSeek-R1 using the SageMaker Python SDK, you will need to set up the SageMaker Python SDK and make certain you have the essential AWS permissions and environment setup. The following is a detailed code example that demonstrates how to deploy and utilize DeepSeek-R1 for inference programmatically. The code for releasing the design is provided in the Github here. You can clone the note pad and run from SageMaker Studio.

    You can run extra demands against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail using the Amazon Bedrock console or the API, and execute it as displayed in the following code:

    Clean up

    To avoid undesirable charges, finish the actions in this section to tidy up your resources.

    Delete the Amazon Bedrock Marketplace deployment

    If you released the design utilizing Amazon Bedrock Marketplace, total the following steps:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, select Marketplace implementations.
  5. In the Managed implementations section, find the endpoint you want to delete.
  6. Select the endpoint, and on the Actions menu, choose Delete.
  7. Verify the endpoint details to make certain you're deleting the appropriate implementation: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you released will sustain costs if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we explored how you can access and deploy the DeepSeek-R1 design utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get begun. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Starting with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI business build ingenious options using AWS services and sped up calculate. Currently, he is concentrated on developing techniques for fine-tuning and enhancing the inference efficiency of big language designs. In his downtime, Vivek enjoys hiking, watching films, and trying various foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.

    Jonathan Evans is an Expert Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads item, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is enthusiastic about developing services that help accelerate their AI journey and unlock organization worth.