1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
renategeyer543 edited this page 2025-05-27 22:05:39 +00:00
This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.


Today, we are delighted to announce that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier design, DeepSeek-R1, along with the distilled variations ranging from 1.5 to 70 billion criteria to build, experiment, and properly scale your generative AI ideas on AWS.

In this post, we show how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to release the distilled variations of the models also.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language model (LLM) developed by DeepSeek AI that utilizes reinforcement learning to enhance reasoning capabilities through a multi-stage training procedure from a DeepSeek-V3-Base foundation. A key identifying feature is its reinforcement learning (RL) step, which was used to refine the design's responses beyond the basic pre-training and fine-tuning process. By including RL, DeepSeek-R1 can adjust better to user feedback and objectives, ultimately improving both relevance and clarity. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) technique, meaning it's equipped to break down complex questions and reason through them in a detailed manner. This assisted thinking procedure enables the design to produce more accurate, transparent, and detailed answers. This design combines RL-based fine-tuning with CoT capabilities, aiming to produce structured responses while focusing on interpretability and user interaction. With its wide-ranging abilities DeepSeek-R1 has actually recorded the industry's attention as a versatile text-generation design that can be incorporated into various workflows such as agents, logical thinking and information analysis jobs.

DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture permits activation of 37 billion specifications, enabling efficient inference by routing questions to the most pertinent expert "clusters." This method enables the design to specialize in different problem domains while maintaining total efficiency. DeepSeek-R1 requires a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will use an ml.p5e.48 xlarge circumstances to deploy the design. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.

DeepSeek-R1 distilled models bring the thinking abilities of the main R1 model to more efficient architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller, more effective designs to mimic the habits and thinking patterns of the bigger DeepSeek-R1 model, using it as a teacher design.

You can release DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we advise releasing this design with guardrails in place. In this blog, we will utilize Amazon Bedrock Guardrails to present safeguards, avoid harmful content, and evaluate designs against essential safety criteria. At the time of writing this blog, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can produce multiple guardrails tailored to various use cases and apply them to the DeepSeek-R1 model, improving user experiences and standardizing safety controls across your generative AI applications.

Prerequisites

To release the DeepSeek-R1 design, you need access to an ml.p5e circumstances. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and verify you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are releasing. To ask for a limit boost, create a limitation boost request and connect to your account team.

Because you will be releasing this design with Amazon Bedrock Guardrails, make certain you have the appropriate AWS Identity and Gain Access To Management (IAM) permissions to use Amazon Bedrock Guardrails. For directions, see Set up approvals to utilize guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails enables you to present safeguards, avoid damaging material, and evaluate designs against essential security criteria. You can execute safety measures for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This allows you to use guardrails to examine user inputs and model actions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.

The general circulation involves the following steps: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the model for reasoning. After receiving the design's output, another guardrail check is applied. If the output passes this last check, it's returned as the result. However, if either the input or output is stepped in by the guardrail, a message is returned showing the nature of the intervention and whether it happened at the input or output stage. The examples showcased in the following areas demonstrate reasoning utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized structure models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following actions:

1. On the Amazon Bedrock console, select Model catalog under Foundation models in the navigation pane. At the time of writing this post, you can utilize the InvokeModel API to invoke the design. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a supplier and select the DeepSeek-R1 model.

The model detail page supplies important details about the model's abilities, rates structure, and application standards. You can discover detailed use directions, consisting of sample API calls and code snippets for integration. The design supports different text generation jobs, consisting of material creation, code generation, and question answering, utilizing its support learning optimization and CoT thinking capabilities. The page also includes implementation choices and licensing details to help you get going with DeepSeek-R1 in your applications. 3. To begin utilizing DeepSeek-R1, choose Deploy.

You will be triggered to configure the implementation details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, get in an endpoint name (between 1-50 alphanumeric characters). 5. For Number of circumstances, get in a variety of circumstances (between 1-100). 6. For example type, select your circumstances type. For optimum performance with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is advised. Optionally, you can set up advanced security and infrastructure settings, consisting of virtual private cloud (VPC) networking, service role authorizations, and file encryption settings. For a lot of use cases, the default settings will work well. However, for production releases, you might desire to review these settings to align with your company's security and compliance requirements. 7. Choose Deploy to begin using the design.

When the implementation is total, you can test DeepSeek-R1's capabilities straight in the Amazon Bedrock play area. 8. Choose Open in play ground to access an interactive interface where you can try out various prompts and adjust design parameters like temperature level and maximum length. When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for ideal results. For instance, material for reasoning.

This is an excellent method to explore the design's reasoning and text generation capabilities before incorporating it into your applications. The play area supplies immediate feedback, assisting you understand how the model reacts to different inputs and letting you fine-tune your triggers for ideal results.

You can quickly evaluate the design in the play ground through the UI. However, to invoke the deployed design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run inference using guardrails with the deployed DeepSeek-R1 endpoint

The following code example demonstrates how to carry out reasoning utilizing a deployed DeepSeek-R1 design through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have actually produced the guardrail, use the following code to execute guardrails. The script initializes the bedrock_runtime customer, sets up reasoning parameters, and sends a demand to produce text based upon a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML options that you can release with just a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your data, and deploy them into production using either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart uses 2 approaches: utilizing the user-friendly SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's check out both techniques to help you choose the technique that best suits your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to release DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, choose Studio in the navigation pane. 2. First-time users will be prompted to develop a domain. 3. On the SageMaker Studio console, pick JumpStart in the navigation pane.

The model web browser shows available models, with details like the provider name and model abilities.

4. Look for DeepSeek-R1 to see the DeepSeek-R1 model card. Each design card reveals essential details, including:

- Model name

  • Provider name
  • Task category (for instance, Text Generation). Bedrock Ready badge (if suitable), suggesting that this design can be registered with Amazon Bedrock, permitting you to use Amazon Bedrock APIs to invoke the design

    5. Choose the model card to see the model details page.

    The design details page includes the following details:

    - The model name and supplier details. Deploy button to deploy the model. About and Notebooks tabs with detailed details

    The About tab consists of essential details, such as:

    - Model description.
  • License details.
  • Technical requirements.
  • Usage standards

    Before you release the design, it's suggested to evaluate the design details and license terms to verify compatibility with your usage case.

    6. Choose Deploy to proceed with implementation.

    7. For Endpoint name, utilize the automatically produced name or produce a custom-made one.
  1. For example type ¸ select an instance type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, enter the variety of circumstances (default: 1). Selecting appropriate instance types and counts is essential for expense and efficiency optimization. Monitor your deployment to adjust these settings as needed.Under Inference type, Real-time reasoning is selected by default. This is optimized for sustained traffic and low latency.
  3. Review all configurations for precision. For this design, we highly recommend adhering to SageMaker JumpStart default settings and making certain that network isolation remains in place.
  4. Choose Deploy to deploy the model.

    The implementation procedure can take a number of minutes to complete.

    When deployment is total, your endpoint status will change to InService. At this moment, the model is ready to accept inference demands through the endpoint. You can monitor the release progress on the SageMaker console Endpoints page, which will display pertinent metrics and status details. When the release is total, you can invoke the model utilizing a SageMaker runtime client and incorporate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To start with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to install the SageMaker Python SDK and make certain you have the necessary AWS authorizations and environment setup. The following is a detailed code example that shows how to deploy and use DeepSeek-R1 for reasoning programmatically. The code for releasing the model is provided in the Github here. You can clone the notebook and run from SageMaker Studio.

    You can run extra requests against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail using the Amazon Bedrock console or the API, and execute it as displayed in the following code:

    Tidy up

    To prevent unwanted charges, complete the steps in this area to tidy up your resources.

    Delete the Amazon Bedrock Marketplace implementation

    If you deployed the design utilizing Amazon Bedrock Marketplace, complete the following steps:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, choose Marketplace releases.
  5. In the Managed deployments area, locate the endpoint you want to delete.
  6. Select the endpoint, and on the Actions menu, choose Delete.
  7. Verify the endpoint details to make certain you're deleting the appropriate release: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you deployed will sustain costs if you leave it running. Use the following code to delete the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and deploy the DeepSeek-R1 model using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to begin. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, gratisafhalen.be SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting going with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies develop innovative services using AWS services and accelerated compute. Currently, he is concentrated on establishing techniques for fine-tuning and enhancing the inference performance of big language models. In his free time, Vivek delights in treking, enjoying movies, and attempting various cuisines.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is a Professional Solutions Architect dealing with generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads item, engineering, and tactical collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is enthusiastic about developing services that help consumers accelerate their AI journey and unlock business value.